Séminaires : Séminaire d'Algèbre

Equipe(s) : gr,
Responsables :J. Alev, D. Hernandez, B. Keller, Th. Levasseur, et S. Morier-Genoud.
Email des responsables : Jacques Alev <jacques.alev@univ-reims.fr>, David Hernandez <david.hernandez@imj-prg.fr>, Bernhard Keller <bernhard.keller@imj-prg.fr>, Thierry Levasseur <Thierry.Levasseur@univ-brest.fr>, Sophie Morier-Genoud <sophie.morier-genoud@imj-prg.fr>
Salle : Info sur https://researchseminars.org/seminar/paris-algebra-seminar
Adresse :
Description

Le séminaire est prévu en présence à l'IHP et à distance. Pour les liens et mots de passe, merci de contacter l'un des organisateurs ou de souscrire à la liste de diffusion https://listes.math.cnrs.fr/wws/info/paris-algebra-seminar. L'information nécessaire sera envoyée par courrier électronique peu avant chaque exposé. Les notes et transparents sont disponibles ici.

 

Since March 23, 2020, the seminar has been taking place remotely. For the links and passwords, please contact one of the organizers or

subscribe to the mailing list at https://listes.math.cnrs.fr/wws/info/paris-algebra-seminar. The connexion information will be emailed shortly before each talk. Slides and notes are available here.

 


Orateur(s) Tom SUTHERLAND - Oxford,
Titre Stability conditions for Painlevé quivers
Date30/01/2012
Horaire14:00 à 15:00
Diffusion
RésumeTo each of the Painlevé equations we associate a quiver drawn on the Riemann sphere by considering trajectories of a one-dimensional family of quadratic differentials with prescribed poles. These quadratic differentials parameterise the base of a Hitchin integrable system whose isomonodromic deformations are described by the solutions of the corresponding Painlevé equation. We will describe a connected component of the space of numerical stability conditions of the Ginzburg algebra of these quivers via the periods of the Seiberg-Witten differential on the spectral elliptic curves.
SalleInfo sur https://researchseminars.org/seminar/paris-algebra-seminar
Adresse
© IMJ-PRG