Séminaires : Séminaire d'Algèbre

Equipe(s) : gr,
Responsables :J. Alev, D. Hernandez, B. Keller, Th. Levasseur, et S. Morier-Genoud.
Email des responsables : Jacques Alev <jacques.alev@univ-reims.fr>, David Hernandez <david.hernandez@imj-prg.fr>, Bernhard Keller <bernhard.keller@imj-prg.fr>, Thierry Levasseur <Thierry.Levasseur@univ-brest.fr>, Sophie Morier-Genoud <sophie.morier-genoud@imj-prg.fr>
Salle : à distance / remote
Adresse :IHP
Description

Depuis le 23 mars 2020, le séminaire se tient à distance. Pour les liens et mots de passe, merci de contacter l'un des organisateurs ou de souscrire à la liste de diffusion https://listes.math.cnrs.fr/wws/info/paris-algebra-seminar. L'information nécessaire sera envoyée par courrier électronique peu avant chaque exposé. Les notes et transparents sont disponibles ici.

 

Since March 23, 2020, the seminar has been taking place remotely. For the links and passwords, please contact one of the organizers or

subscribe to the mailing list at https://listes.math.cnrs.fr/wws/info/paris-algebra-seminar. The connexion information will be emailed shortly before each talk. Slides and notes are available here.

 


Orateur(s) Fabio GAVARINI - Rome Tor Vergata,
Titre Supergroupes algébriques associés aux superalgèbres de Lie de type Cartan
Date18/06/2012
Horaire14:00 à 15:00
Diffusion
RésumePour toute superalgèbre de Lie complexe simple de type Cartan, nous présentons une construction explicite de supergroupes algébriques - donnés par leurs propres foncteurs des points - connexes dont la superalgèbre de Lie tangente est celle de départ. La construction généralise au cas présent la méthode utilisée jadis par Chevalley pour construire des groupes simples connexes associés à toute algèbre de Lie simple de dimension finie. Vice versa, on prouve aussi que tout supergroupe algébrique connexe dont la superalgèbre de Lie tangente soit de type Cartan est isomorphe à l'un des supergroupes donnés par cette construction.
Salleà distance / remote
AdresseIHP
© IMJ-PRG