Séminaires : Séminaire d'Algèbre

Equipe(s) : gr,
Responsables :J. Alev, D. Hernandez, B. Keller, Th. Levasseur, et S. Morier-Genoud.
Email des responsables : Jacques Alev <jacques.alev@univ-reims.fr>, David Hernandez <david.hernandez@imj-prg.fr>, Bernhard Keller <bernhard.keller@imj-prg.fr>, Thierry Levasseur <Thierry.Levasseur@univ-brest.fr>, Sophie Morier-Genoud <sophie.morier-genoud@imj-prg.fr>
Salle : Info sur https://researchseminars.org/seminar/paris-algebra-seminar
Adresse :
Description

Le séminaire est prévu en présence à l'IHP et à distance. Pour les liens et mots de passe, merci de contacter l'un des organisateurs ou de souscrire à la liste de diffusion https://listes.math.cnrs.fr/wws/info/paris-algebra-seminar. L'information nécessaire sera envoyée par courrier électronique peu avant chaque exposé. Les notes et transparents sont disponibles ici.

 

Since March 23, 2020, the seminar has been taking place remotely. For the links and passwords, please contact one of the organizers or

subscribe to the mailing list at https://listes.math.cnrs.fr/wws/info/paris-algebra-seminar. The connexion information will be emailed shortly before each talk. Slides and notes are available here.

 


Orateur(s) Mathieu MANSUY - Paris,
Titre Modules extrémaux pour les algèbres toroïdales quantiques
Date08/04/2013
Horaire14:00 à 15:00
Diffusion
RésumeKashiwara a défini une classe de représentations intégrables des algèbres affines quantiques appelées représentations extrémales. Il s'agit de représentations, avec une base cristalline, paramétrées par le réseau des poids intégraux. Ces représentations ont une importance particulière car, pour certains poids, elles ont des quotients de dimension finie. Dans cet exposé, nous présentons une généralisation de ces représentations pour l'algèbre toroïdale quantique, affinisation de l'algèbre affine quantique. En particulier nous obtenons là aussi des représentations de dimension finie, aux racines de l'unité.
SalleInfo sur https://researchseminars.org/seminar/paris-algebra-seminar
Adresse
© IMJ-PRG