Séminaires : Séminaire d'Algèbre

Equipe(s) : gr,
Responsables :J. Alev, D. Hernandez, B. Keller, Th. Levasseur, et S. Morier-Genoud.
Email des responsables : Jacques Alev <jacques.alev@univ-reims.fr>, David Hernandez <david.hernandez@imj-prg.fr>, Bernhard Keller <bernhard.keller@imj-prg.fr>, Thierry Levasseur <Thierry.Levasseur@univ-brest.fr>, Sophie Morier-Genoud <sophie.morier-genoud@imj-prg.fr>
Salle : 001
Adresse :IHP


Orateur(s) Luca MOCI - Paris,
Titre Matroids over a ring: motivations, examples, applications.
Horaire14:00 à 15:00
RésumeSeveral objects can be associated to a list of vectors with integer coordinates: among others, a family of tori called toric arrangement, a convex polytope called zonotope, a function called vector partition function. These objects and their relations have been described in a recent book by De Concini and Procesi. The linear algebra of the list of vectors is retained by the combinatorial notion of a matroid; but several properties of the objects above depend also on the arithmetics of the list. This can be encoded by the notion of a ``matroid over Z''. Similarly, applications to tropical geometry suggest the introduction of matroids over a discrete valuation ring. Motivated by the examples above, we introduce the more general notion of a ``matroid over a commutative ring R''. Such a matroid arises for example from a list of elements in a R-module. When R is a Dedekind domain, we can extend the usual properties and operations holding for matroids (e.g., duality). We can also compute the Tutte-Grothendieck ring of matroids over R; the class of a matroid in such a ring specializes to several invariants, such as the Tutte polynomial and the Tutte quasipolynomial. We will also outline other possible applications and open problems. (Joint work with Alex Fink).