Séminaires : Séminaire d'Algèbre

Equipe(s) : gr,
Responsables :J. Alev, D. Hernandez, B. Keller, Th. Levasseur, et S. Morier-Genoud.
Email des responsables : Jacques Alev <jacques.alev@univ-reims.fr>, David Hernandez <david.hernandez@imj-prg.fr>, Bernhard Keller <bernhard.keller@imj-prg.fr>, Thierry Levasseur <Thierry.Levasseur@univ-brest.fr>, Sophie Morier-Genoud <sophie.morier-genoud@imj-prg.fr>
Salle : à distance / remote
Adresse :IHP
Description

Depuis le 23 mars 2020, le séminaire se tient à distance. Pour les liens et mots de passe, merci de contacter l'un des organisateurs ou de souscrire à la liste de diffusion https://listes.math.cnrs.fr/wws/info/paris-algebra-seminar. L'information nécessaire sera envoyée par courrier électronique peu avant chaque exposé. Les notes et transparents sont disponibles ici.

 

Since March 23, 2020, the seminar has been taking place remotely. For the links and passwords, please contact one of the organizers or

subscribe to the mailing list at https://listes.math.cnrs.fr/wws/info/paris-algebra-seminar. The connexion information will be emailed shortly before each talk. Slides and notes are available here.

 


Orateur(s) Dimitri GUREVICH - VALENCIENNES,
Titre Quantization of Weyl algebras
Date16/12/2013
Horaire14:00 à 15:00
Diffusion
RésumeGiven a commutative associative algebra A=Sym(V), where V is a vector space,  the corresponding Weyl algebra W(A) is  generated by A and partial derivatives in generators of A.  In my talk I'll discuss how it is possible to generalize this notion (as well as that of the corresponding differential algebra) to some Noncommutative algebras. Namely, I'll consider two cases: 1.  A=U(gl(n)) and 2.  A is a braided algebra, i.e. that arising from a braiding (a solution to the Quantum Yang-Baxter Equation). Applications to Mathematical Physics will be given.
Salleà distance / remote
AdresseIHP
© IMJ-PRG