Séminaires : Séminaire d'Algèbre

Equipe(s) : gr,
Responsables :J. Alev, D. Hernandez, B. Keller, Th. Levasseur, et S. Morier-Genoud.
Email des responsables : Jacques Alev <jacques.alev@univ-reims.fr>, David Hernandez <david.hernandez@imj-prg.fr>, Bernhard Keller <bernhard.keller@imj-prg.fr>, Thierry Levasseur <Thierry.Levasseur@univ-brest.fr>, Sophie Morier-Genoud <sophie.morier-genoud@imj-prg.fr>
Salle : Info sur https://researchseminars.org/seminar/paris-algebra-seminar
Adresse :
Description

Le séminaire est prévu en présence à l'IHP et à distance. Pour les liens et mots de passe, merci de contacter l'un des organisateurs ou de souscrire à la liste de diffusion https://listes.math.cnrs.fr/wws/info/paris-algebra-seminar. L'information nécessaire sera envoyée par courrier électronique peu avant chaque exposé. Les notes et transparents sont disponibles ici.

 

Since March 23, 2020, the seminar has been taking place remotely. For the links and passwords, please contact one of the organizers or

subscribe to the mailing list at https://listes.math.cnrs.fr/wws/info/paris-algebra-seminar. The connexion information will be emailed shortly before each talk. Slides and notes are available here.

 


Orateur(s) Lauren WILLIAMS - Berkeley,
Titre Cluster duality and mirror symmetry for Grassmannians
Date26/01/2015
Horaire14:00 à 15:00
Diffusion
RésumeWe consider the Grassmannian $X=Gr_{n-k,n}$ and its mirror dual Landau-Ginzburg model ($X$-check, $W$), which takes place on a dual Grassmannian. Postnikov's theory of plabic graphs can be used both to parameterize a dense open subset of $X$, and to describe the cluster structure on $X$-check. For each reduced plabic graph $G$ associated to $X$, we describe an associated Newton-Okounkov polytope as a convex hull of certain lattice points. We show that the same polytope, but described in terms of inequalities, can be obtained by ``tropicalizing'' the superpotential $W$, after writing it in terms of the cluster associated to $G$.
SalleInfo sur https://researchseminars.org/seminar/paris-algebra-seminar
Adresse
© IMJ-PRG