Séminaires : Séminaire d'Algèbre

Equipe(s) : gr,
Responsables :J. Alev, D. Hernandez, B. Keller, Th. Levasseur, et S. Morier-Genoud.
Email des responsables : Jacques Alev <jacques.alev@univ-reims.fr>, David Hernandez <david.hernandez@imj-prg.fr>, Bernhard Keller <bernhard.keller@imj-prg.fr>, Thierry Levasseur <Thierry.Levasseur@univ-brest.fr>, Sophie Morier-Genoud <sophie.morier-genoud@imj-prg.fr>
Salle : à distance / remote
Adresse :IHP
Description

Depuis le 23 mars 2020, le séminaire se tient à distance. Pour les liens et mots de passe, merci de contacter l'un des organisateurs ou de souscrire à la liste de diffusion https://listes.math.cnrs.fr/wws/info/paris-algebra-seminar. L'information nécessaire sera envoyée par courrier électronique peu avant chaque exposé. Les notes et transparents sont disponibles ici.

 

Since March 23, 2020, the seminar has been taking place remotely. For the links and passwords, please contact one of the organizers or

subscribe to the mailing list at https://listes.math.cnrs.fr/wws/info/paris-algebra-seminar. The connexion information will be emailed shortly before each talk. Slides and notes are available here.

 


Orateur(s) Alfons OOMS - ,
Titre On the polynomiality of the Poisson center and semi-center of a Lie algebra of index at most two
Date09/03/2015
Horaire14:00 à 15:00
Diffusion
RésumeLet L be a finite dimensional Lie algebra over an algebraically closed field k of characteristic zero and let S(L) be its symmetric algebra, equipped with its natural Poisson structure. L is called coregular if the Poisson center of S(L) is polynomial. We collect some simple criteria in order for this to occur. Examples show that this happens very rarely when the index of L is rather large, compared to the dimension of L. Therefore it seems natural to let the index be at most two. Under this condition any nilpotent Lie algebra is coregular. This result is not true in the solvable case or if the index is equal to three. On the other hand, any nonsolvable Lie algebra of dimension at most eight is coregular. A counterexample is given in dimension nine.
Salleà distance / remote
AdresseIHP
© IMJ-PRG