Séminaires : Séminaire d'Algèbre

Equipe(s) : gr,
Responsables :J. Alev, D. Hernandez, B. Keller, Th. Levasseur, et S. Morier-Genoud.
Email des responsables : Jacques Alev <jacques.alev@univ-reims.fr>, David Hernandez <david.hernandez@imj-prg.fr>, Bernhard Keller <bernhard.keller@imj-prg.fr>, Thierry Levasseur <Thierry.Levasseur@univ-brest.fr>, Sophie Morier-Genoud <sophie.morier-genoud@imj-prg.fr>
Salle : à distance
Adresse :IHP
Description
 

 


Orateur(s) Shmuel ZELIKSON - ,
Titre Jeux de nombres d'Auslander-Reiten
Date02/03/2015
Horaire14:00 à 15:00
RésumeUn jeu de nombres (au sens de Mozes) a pour tableau un graphe fini G. Un état de jeu consiste en une valuation des sommets de G par des nombres entiers. Les mouvements de jeu sont entièrement définis à partir de la structure de G. Un tel jeu, avec le diagramme de Dynkin comme tableau a été introduit par Mozes pour modéliser l'orbite sous le groupe de Weyl d'un poids dominant. Soit g une algèbre de Lie simple complexe de type ADE. Nous verrons qu'un jeu de nombres permet d'obtenir les multiplicités de poids d'une représentation simple de dimension finie. Il constitue donc une solution combinatoire pour la formule de caractères de Weyl, à savoir une famille d'objets dont la cardinalité de ceux d'un poids donné, est égale à la multiplicité de l'espace de poids correspondant. Ce jeu se joue sur le carquois d'Auslander-Reiten attaché à une orientation du diagramme de Dynkin de g.
Salleà distance
AdresseIHP
© IMJ-PRG