Séminaires : Séminaire d'Algèbre

Equipe(s) : gr,
Responsables :J. Alev, D. Hernandez, B. Keller, Th. Levasseur, et S. Morier-Genoud.
Email des responsables : Jacques Alev <jacques.alev@univ-reims.fr>, David Hernandez <david.hernandez@imj-prg.fr>, Bernhard Keller <bernhard.keller@imj-prg.fr>, Thierry Levasseur <Thierry.Levasseur@univ-brest.fr>, Sophie Morier-Genoud <sophie.morier-genoud@imj-prg.fr>
Salle : à distance / remote
Adresse :IHP
Description

Depuis le 23 mars 2020, le séminaire se tient à distance. Pour les liens et mots de passe, merci de contacter l'un des organisateurs ou de souscrire à la liste de diffusion https://listes.math.cnrs.fr/wws/info/paris-algebra-seminar. L'information nécessaire sera envoyée par courrier électronique peu avant chaque exposé. Les notes et transparents sont disponibles ici.

 

Since March 23, 2020, the seminar has been taking place remotely. For the links and passwords, please contact one of the organizers or

subscribe to the mailing list at https://listes.math.cnrs.fr/wws/info/paris-algebra-seminar. The connexion information will be emailed shortly before each talk. Slides and notes are available here.

 


Orateur(s) Jean-Philippe MICHEL - Louvain,
Titre Déterminants sur les algèbres graduées-commutatives
Date23/02/2015
Horaire14:00 à 15:00
Diffusion
RésumeCet exposé vise à présenter les rudiments de l'algèbre linéaire, en particulier la notion de déterminant, sur une algèbre graduée-commutative, pour un groupe graduant abélien de type fini et un bi-caractère quelconque. Les exemples de telles algèbres abondent, par ordre de généralité: algèbres des quaternions, de Clifford, de matrices. L'outil fondamental pour cette étude est l'équivalence de catégorie [dûe à Nekludova et Scheunert, '70] entre algèbres graduées-commutatives et algèbres supercommutatives. Lorsque cette équivalence est directement applicable (matrices de degré 0), elle fournit une formule simple et complètement explicite pour le déterminant ainsi qu'une élégante caractérisation (généralisation du theorème de [McDonald '82]). Au contraire, pour les matrices quelconques (correspondant aux endomorphismes internes de modules gradués), l'approche catégorique ne permet plus de construire un déterminant multiplicatif, comme celui bien connu sur les quaternions [Dieudonné '43]. L'exposé sera illustré par quelques exemples. Il repose sur le preprint arXiv:1403.7474, écrit en collaboration avec Tiffany Covolo (Université du Luxembourg).
Salleà distance / remote
AdresseIHP
© IMJ-PRG