Séminaires : Séminaire d'Algèbre

Equipe(s) : gr,
Responsables :J. Alev, D. Hernandez, B. Keller, Th. Levasseur, et S. Morier-Genoud.
Email des responsables : Jacques Alev <jacques.alev@univ-reims.fr>, David Hernandez <david.hernandez@imj-prg.fr>, Bernhard Keller <bernhard.keller@imj-prg.fr>, Thierry Levasseur <Thierry.Levasseur@univ-brest.fr>, Sophie Morier-Genoud <sophie.morier-genoud@imj-prg.fr>
Salle : à distance / remote
Adresse :IHP
Description

Depuis le 23 mars 2020, le séminaire se tient à distance. Pour les liens et mots de passe, merci de contacter l'un des organisateurs ou de souscrire à la liste de diffusion https://listes.math.cnrs.fr/wws/info/paris-algebra-seminar. L'information nécessaire sera envoyée par courrier électronique peu avant chaque exposé. Les notes et transparents sont disponibles ici.

 

Since March 23, 2020, the seminar has been taking place remotely. For the links and passwords, please contact one of the organizers or

subscribe to the mailing list at https://listes.math.cnrs.fr/wws/info/paris-algebra-seminar. The connexion information will be emailed shortly before each talk. Slides and notes are available here.

 


Orateur(s) Tom LENAGAN - ,
Titre The usefulness of Cauchon techniques in studying totally nonnegative matrices
Date12/10/2015
Horaire14:00 à 15:00
Diffusion
RésumeA real matrix is totally nonnegative if each of its minors is nonnegative. Specifying the minors which are zero produces a cell decomposition of totally nonnegative matrices of a given size. The deleting derivations algorithm introduced by Cauchon with great success in studying quantum matrices and other noncommutative algebras can be used to investigate the cell decomposition of totally nonnegative matrices in an efficient manner. In this talk I will describe work of Goodearl, Launois and myself showing how this happens. Also, I will give new proofs of some old results about totally nonnegative matrices by using the Cauchon techniques.
Salleà distance / remote
AdresseIHP
© IMJ-PRG