Séminaires : Séminaire d'Algèbre

Equipe(s) : gr,
Responsables :J. Alev, D. Hernandez, B. Keller, Th. Levasseur, et S. Morier-Genoud.
Email des responsables : Jacques Alev <jacques.alev@univ-reims.fr>, David Hernandez <david.hernandez@imj-prg.fr>, Bernhard Keller <bernhard.keller@imj-prg.fr>, Thierry Levasseur <Thierry.Levasseur@univ-brest.fr>, Sophie Morier-Genoud <sophie.morier-genoud@imj-prg.fr>
Salle : 001
Adresse :IHP
Description
 

 


Orateur(s) Tom LENAGAN - ,
Titre The usefulness of Cauchon techniques in studying totally nonnegative matrices
Date12/10/2015
Horaire14:00 à 15:00
RésumeA real matrix is totally nonnegative if each of its minors is nonnegative. Specifying the minors which are zero produces a cell decomposition of totally nonnegative matrices of a given size. The deleting derivations algorithm introduced by Cauchon with great success in studying quantum matrices and other noncommutative algebras can be used to investigate the cell decomposition of totally nonnegative matrices in an efficient manner. In this talk I will describe work of Goodearl, Launois and myself showing how this happens. Also, I will give new proofs of some old results about totally nonnegative matrices by using the Cauchon techniques.
Salle001
AdresseIHP
© IMJ-PRG