Séminaires : Séminaire d'Algèbre

Equipe(s) : gr,
Responsables :J. Alev, D. Hernandez, B. Keller, Th. Levasseur, et S. Morier-Genoud.
Email des responsables : Jacques Alev <jacques.alev@univ-reims.fr>, David Hernandez <david.hernandez@imj-prg.fr>, Bernhard Keller <bernhard.keller@imj-prg.fr>, Thierry Levasseur <Thierry.Levasseur@univ-brest.fr>, Sophie Morier-Genoud <sophie.morier-genoud@imj-prg.fr>
Salle : à distance / remote
Adresse :IHP
Description

Depuis le 23 mars 2020, le séminaire se tient à distance. Pour les liens et mots de passe, merci de contacter l'un des organisateurs ou de souscrire à la liste de diffusion https://listes.math.cnrs.fr/wws/info/paris-algebra-seminar. L'information nécessaire sera envoyée par courrier électronique peu avant chaque exposé. Les notes et transparents sont disponibles ici.

 

Since March 23, 2020, the seminar has been taking place remotely. For the links and passwords, please contact one of the organizers or

subscribe to the mailing list at https://listes.math.cnrs.fr/wws/info/paris-algebra-seminar. The connexion information will be emailed shortly before each talk. Slides and notes are available here.

 


Orateur(s) Ghislain FOURIER - Glasgow,
Titre PBW filtration, birational sequences, and toric degenerations (projet ERC QAffine)
Date11/04/2016
Horaire14:00 à 15:00
Diffusion
RésumeThe PBW filtration and degeneration for a semi-simple complex Lie algebra provides a fruitful bridge from Lie theory to commutative algebra. We will be focussing on $sl_n$ and recalling the degenerate flag variety, a flat degeneration of the classical flag variety. I'll introduce monomial bases for the PBW degenerate simple $sl_n$-modules and describe the associated flat toric degeneration of the flag variety (this is joint work with E. Feigin and P. Littelmann). In order to set this in context with previously known toric degenerations (due to Caldero, Littelmann, Alexeev-Brion et al), I'll introduce ''birational sequences'', which are in some sense factorizations of a maximal unipotent subgroup of $SL_n$. This provides a framework of toric degenerations that covers for all types the construction of string polytopes, Lusztig polytopes and many more (the latter is joint work with X. Fang and P. Littelmann).
Salleà distance / remote
AdresseIHP
© IMJ-PRG