Séminaires : Séminaire d'Algèbre

Equipe(s) : gr,
Responsables :J. Alev, D. Hernandez, B. Keller, Th. Levasseur, et S. Morier-Genoud.
Email des responsables : Jacques Alev <jacques.alev@univ-reims.fr>, David Hernandez <david.hernandez@imj-prg.fr>, Bernhard Keller <bernhard.keller@imj-prg.fr>, Thierry Levasseur <Thierry.Levasseur@univ-brest.fr>, Sophie Morier-Genoud <sophie.morier-genoud@imj-prg.fr>
Salle : Info sur https://researchseminars.org/seminar/paris-algebra-seminar
Adresse :
Description

Le séminaire est prévu en présence à l'IHP et à distance. Pour les liens et mots de passe, merci de contacter l'un des organisateurs ou de souscrire à la liste de diffusion https://listes.math.cnrs.fr/wws/info/paris-algebra-seminar. L'information nécessaire sera envoyée par courrier électronique peu avant chaque exposé. Les notes et transparents sont disponibles ici.

 

Since March 23, 2020, the seminar has been taking place remotely. For the links and passwords, please contact one of the organizers or

subscribe to the mailing list at https://listes.math.cnrs.fr/wws/info/paris-algebra-seminar. The connexion information will be emailed shortly before each talk. Slides and notes are available here.

 


Orateur(s) Christian BLANCHET - Paris 7,
Titre sl(2) quantique déroulé et TQFTs non semisimples
Date15/02/2016
Horaire14:00 à 15:00
Diffusion
RésumeLes invariants quantiques des entrelacs et des variétés de dimension 3 dits de Witten-Reshetikin-Turaev sont obtenus à partir des représentations du groupe quantique sl(2) aux racines de l'unité. Il existe plusieurs versions de ce groupe quantique , celle qui est utilisé pour les invariants WRT est le petit groupe quantique et plus précisément sa semisimplification. Le groupe sl(2) quantique déroulé est une extension du groupe quantique restreint qui permet de construire une catégorie enrubannée dans laquelle les modules simples sont indexés par des poids complexes. Nous définirons cette catégorie et décrirons ses modules projectifs indécomposables. Costantino, Geer et Patureau ont défini pour chaque entier $p>1$, non congru à 0 modulo 4, des invariants en dimension 3 basée sur ce groupe quantique déroulé. Nous présenterons les TQFTs, non semisimples, qui étendent ces invariants et décrirons algébriquement les espaces vectoriels gradués obtenus, ainsi que l'action des Mapping Class Groups. Travail en commun avec François Costantino, Nathan Geer et Bertrand Patureau.
SalleInfo sur https://researchseminars.org/seminar/paris-algebra-seminar
Adresse
© IMJ-PRG