Séminaires : Séminaire d'Algèbre

Equipe(s) : gr,
Responsables :J. Alev, D. Hernandez, B. Keller, Th. Levasseur, et S. Morier-Genoud.
Email des responsables : Jacques Alev <jacques.alev@univ-reims.fr>, David Hernandez <david.hernandez@imj-prg.fr>, Bernhard Keller <bernhard.keller@imj-prg.fr>, Thierry Levasseur <Thierry.Levasseur@univ-brest.fr>, Sophie Morier-Genoud <sophie.morier-genoud@imj-prg.fr>
Salle : à distance / remote
Adresse :IHP
Description

Depuis le 23 mars 2020, le séminaire se tient à distance. Pour les liens et mots de passe, merci de contacter l'un des organisateurs ou de souscrire à la liste de diffusion https://listes.math.cnrs.fr/wws/info/paris-algebra-seminar. L'information nécessaire sera envoyée par courrier électronique peu avant chaque exposé. Les notes et transparents sont disponibles ici.

 

Since March 23, 2020, the seminar has been taking place remotely. For the links and passwords, please contact one of the organizers or

subscribe to the mailing list at https://listes.math.cnrs.fr/wws/info/paris-algebra-seminar. The connexion information will be emailed shortly before each talk. Slides and notes are available here.

 


Orateur(s) Naihong HU - Shanghai,
Titre Loewy Filtration and Quantum de Rham Cohomology
Date23/05/2016
Horaire14:00 à 15:00
Diffusion
RésumeThis talk is about : (1) the indecomposable submodule structures of quantum divided power algebra $\mathcal{A}_q(n)$ introduced in my earlier work (2000) and its truncated objects $\mathcal{A}_q(n, m)$, where an ``intertwinedly-lifting`` method is established to prove the indecomposability of a module when its socle is non-simple. (2) The Loewy filtrations are described for all homogeneous subspaces $\mathcal{A}^{(s)}_q(n)$ or $\mathcal{A}_q^{(s)}(n, m)$, the Loewy layers and dimensions are determined. The rigidity of these indecomposable modules is proved. An interesting combinatorial identity is derived from our realization model for a class of indecomposable $\mathfrak{u}_q(\mathfrak{sl}_n)$-modules. (3) Meanwhile, the quantum Grassmann algebra $\Omega_q(n)$ over $\mathcal{A}_q(n)$ is defined and constructed, together with the quantum de Rham complex $(\Omega_q(n), d^\bullet)$ via defining the appropriate $q$-differentials, and its subcomplex $(\Omega_q(n, m), d^\bullet)$. For the latter, the corresponding quantum de Rham cohomology modules are decomposed into the direct sum of some sign-trivial modules. This is a joint work with H.X. Gu.
Salleà distance / remote
AdresseIHP
© IMJ-PRG