Séminaires : Séminaire d'Algèbre

Equipe(s) : gr,
Responsables :J. Alev, D. Hernandez, B. Keller, Th. Levasseur, et S. Morier-Genoud.
Email des responsables : Jacques Alev <jacques.alev@univ-reims.fr>, David Hernandez <david.hernandez@imj-prg.fr>, Bernhard Keller <bernhard.keller@imj-prg.fr>, Thierry Levasseur <Thierry.Levasseur@univ-brest.fr>, Sophie Morier-Genoud <sophie.morier-genoud@imj-prg.fr>
Salle : 001
Adresse :IHP
Description
 

 


Orateur(s) Roland BERGER - ,
Titre Calcul de Koszul
Date07/11/2016
Horaire14:00 à 15:00
RésumeIl s'agit d'un travail en collaboration avec Andrea Solotar et Thierry Lambre (\href{http://arxiv.org/abs/1512.00183}{arXiv1512.00183}). Nous présentons un calcul, dit de Koszul, adapté aux algèbres quadratiques homogènes A. Ce calcul est organisé suivant une homologie et une cohomologie de Koszul munies de cup et cap produits. Si l'algèbre A est Koszul, le calcul de Koszul est isomorphe au calcul de Hochschild, mais il ne l'est pas sur un exemple de A non Koszul explicite. Nous donnerons les principales propriétés du calcul de Koszul en comparaison avec le calcul de Tamarkin-Tsygan. Nous appliquerons ce calcul à la dualité de Koszul en montrant qu'il y a un isomorphisme entre l'algèbre de cohomologie de A et l'algèbre de cohomologie modifiée de sa duale, valable pour toute algèbre quadratique A, Koszul ou non. Cet isomorphisme est complété en homologie par un isomorphisme de bimodules.
Salle001
AdresseIHP
© IMJ-PRG