Séminaires : Séminaire d'Algèbre

Equipe(s) : gr,
Responsables :J. Alev, D. Hernandez, B. Keller, Th. Levasseur, et S. Morier-Genoud.
Email des responsables : Jacques Alev <jacques.alev@univ-reims.fr>, David Hernandez <david.hernandez@imj-prg.fr>, Bernhard Keller <bernhard.keller@imj-prg.fr>, Thierry Levasseur <Thierry.Levasseur@univ-brest.fr>, Sophie Morier-Genoud <sophie.morier-genoud@imj-prg.fr>
Salle : à distance / remote
Adresse :IHP
Description

Depuis le 23 mars 2020, le séminaire se tient à distance. Pour les liens et mots de passe, merci de contacter l'un des organisateurs ou de souscrire à la liste de diffusion https://listes.math.cnrs.fr/wws/info/paris-algebra-seminar. L'information nécessaire sera envoyée par courrier électronique peu avant chaque exposé. Les notes et transparents sont disponibles ici.

 

Since March 23, 2020, the seminar has been taking place remotely. For the links and passwords, please contact one of the organizers or

subscribe to the mailing list at https://listes.math.cnrs.fr/wws/info/paris-algebra-seminar. The connexion information will be emailed shortly before each talk. Slides and notes are available here.

 


Orateur(s) Ruari WALKER - Paris,
Titre Morita Equivalences Between KLR Algebras and VV Algebras (projet ERC QAffine)
Date28/11/2016
Horaire14:00 à 15:00
Diffusion
RésumeA family of graded algebras have been introduced by Khovanov, Lauda and independently by Rouquier, the representation theory of which is closely related to that of the affine Hecke algebras of type A. They are often called KLR algebras, or quiver Hecke algebras, and have been the subject of intense study in past 10 years or so. More recently, Varagnolo and Vasserot have defined a new family of graded algebras whose representation theory is related to the representation theory of the affine Hecke algebras of type B. These algebras can be thought of as type B analogues of KLR algebras in some sense. During this talk I plan to explain this in a little more detail by showing how KLR algebras relate to VV algebras and by comparing their module categories via Morita equivalence. From these equivalences we can deduce properties such as affine cellularity and affine quasiheredity of certain classes of VV algebras.
Salleà distance / remote
AdresseIHP
© IMJ-PRG