Séminaires : Séminaire d'Algèbre

Equipe(s) : gr,
Responsables :J. Alev, D. Hernandez, B. Keller, Th. Levasseur, et S. Morier-Genoud.
Email des responsables : Jacques Alev <jacques.alev@univ-reims.fr>, David Hernandez <david.hernandez@imj-prg.fr>, Bernhard Keller <bernhard.keller@imj-prg.fr>, Thierry Levasseur <Thierry.Levasseur@univ-brest.fr>, Sophie Morier-Genoud <sophie.morier-genoud@imj-prg.fr>
Salle : à distance / remote
Adresse :IHP

Depuis le 23 mars 2020, le séminaire se tient à distance. Pour les liens et mots de passe, merci de contacter l'un des organisateurs ou de souscrire à la liste de diffusion https://listes.math.cnrs.fr/wws/info/paris-algebra-seminar. L'information nécessaire sera envoyée par courrier électronique peu avant chaque exposé. Les notes et transparents sont disponibles ici.


Since March 23, 2020, the seminar has been taking place remotely. For the links and passwords, please contact one of the organizers or

subscribe to the mailing list at https://listes.math.cnrs.fr/wws/info/paris-algebra-seminar. The connexion information will be emailed shortly before each talk. Slides and notes are available here.


Orateur(s) Toby STAFFORD - Université du Michigan,
Titre Noncommutative rational surfaces
Horaire14:00 à 15:00
RésumeOne of the major open problems in non-commutative algebraic geometry is the classification of non-commutative surfaces (or of connected graded algebras of Gelfand-Kirillov dimension 3). Artin has conjectured that the corresponding division rings are known, with the generic case being the ring of fractions of the so-called Sklyanin algebra. In this talk we will discuss progress in classifying the non commutative surfaces birational to Proj of that algebra. In particular, non-commutative analogues +of blowing up and down are understood, and this has for example been used to determine the subalgebras of the Sklyanin algebra. This talk will survey this subject and show in particular that Van den Bergh's quadric surfaces are minimal models in a very strong sense. This is joint work with Dan Rogalski and Sue Sierra.
Salleà distance / remote