Séminaires : Séminaire d'Algèbre

Equipe(s) : gr,
Responsables :J. Alev, D. Hernandez, B. Keller, Th. Levasseur, et S. Morier-Genoud.
Email des responsables : Jacques Alev <jacques.alev@univ-reims.fr>, David Hernandez <david.hernandez@imj-prg.fr>, Bernhard Keller <bernhard.keller@imj-prg.fr>, Thierry Levasseur <Thierry.Levasseur@univ-brest.fr>, Sophie Morier-Genoud <sophie.morier-genoud@imj-prg.fr>
Salle : 001
Adresse :IHP
Description
 

 


Orateur(s) Laurent DEMONET - Caen,
Titre Treillis des classes de torsions
Date15/05/2017
Horaire14:00 à 15:00
Résume[Collaboration avec Osamu Iyama, Nathan Reading, Idun Reiten et Hugh Thomas] Soit $A$ une algèbre de dimension finie sur un corps $k$. Rappelons qu'une classe de torsion $\mathcal{T}$ dans la catégorie $\mathop{\mathsf{mod}} A$ des $A$-modules de dimension finie est une sous catégorie pleine, stable par extensions et par quotients. Nous supposons que $\mathop{\mathsf{mod}} A$ contient un nombre fini de classes de torsions. Dans ce cas, l'ensemble des classes de torsion ordonné par l'inclusion forme un treillis $\mathop{\mathsf{tors}} A$. Nous étudions les quotients de $\mathop{\mathsf{tors}} A$ en en donnant une description algébrique. En particulier, nous décrivons de façon algébrique la relation de \textit{forçage} sur les flèches du carquois de Hasse de $\mathop{\mathsf{tors}} A$. Nous déduisons des résultats combinatoires importants sur $\mathop{\mathsf{tors}} A$, en particulier que ce treillis est un treillis \textit{uniforme pour ses congruences}. Supposons maintenant que $B$ est un quotient de $A$. Il est immédiat que $\mathop{\mathsf{tors}} B$ est un quotient de $\mathop{\mathsf{tors}} A$ via $\mathcal{T} \mapsto \mathcal{T} \cap \mathop{\mathsf{mod}} B$. Nous nous intéressons donc à caractériser les quotients $L$ de $\mathop{\mathsf{tors}} A$ qui sont de la forme $\mathop{\mathsf{tors}} B$. Nous donnons plusieurs conditions nécessaires sur $L$ qui deviennent suffisantes quand $A$ est suffisamment simple. C'est en particulier le cas pour les algèbres préprojectives de type $A_n$ ou les algèbres héréditaires de type fini. Finalement, nous appliquons nos résultats aux algèbres préprojectives, retrouvant des preuves complètement algébriques de résultats sur les treillis cambriens.
Salle001
AdresseIHP
© IMJ-PRG