Séminaires : Séminaire d'Algèbre

Equipe(s) : gr,
Responsables :J. Alev, D. Hernandez, B. Keller, Th. Levasseur, et S. Morier-Genoud.
Email des responsables : Jacques Alev <jacques.alev@univ-reims.fr>, David Hernandez <david.hernandez@imj-prg.fr>, Bernhard Keller <bernhard.keller@imj-prg.fr>, Thierry Levasseur <Thierry.Levasseur@univ-brest.fr>, Sophie Morier-Genoud <sophie.morier-genoud@imj-prg.fr>
Salle : à distance / remote
Adresse :IHP
Description

Depuis le 23 mars 2020, le séminaire se tient à distance. Pour les liens et mots de passe, merci de contacter l'un des organisateurs ou de souscrire à la liste de diffusion https://listes.math.cnrs.fr/wws/info/paris-algebra-seminar. L'information nécessaire sera envoyée par courrier électronique peu avant chaque exposé. Les notes et transparents sont disponibles ici.

 

Since March 23, 2020, the seminar has been taking place remotely. For the links and passwords, please contact one of the organizers or

subscribe to the mailing list at https://listes.math.cnrs.fr/wws/info/paris-algebra-seminar. The connexion information will be emailed shortly before each talk. Slides and notes are available here.

 


Orateur(s) Hironori OYA - Paris,
Titre Twist automorphisms and Chamber Ansatz formulae for quantum unipotent cells
Date16/10/2017
Horaire14:00 à 15:00
Diffusion
RésumeBerenstein, Fomin and Zelevinsky introduced biregular automorphisms, called twist automorphisms, on unipotent cells in their study of total positivity criteria. These automorphisms are essentially used for describing the inverses of specific embeddings of tori into unipotent cells, and the resulting descriptions are called the Chamber Ansatz. In this talk, I explain a quantum analogue of their story. Namely, we construct twist automorphisms on arbitrary quantum unipotent cells and provide a quantum analogue of the Chamber Ansatz formulae. We also study our quantum analogues from the viewpoint of the quantum cluster algebra structures on quantum unipotent cells, which are deduced by Geiss- Leclerc-Schroer and Goodearl-Yakimov. A part of this talk is based on joint work with Yoshiyuki Kimura.
Salleà distance / remote
AdresseIHP
© IMJ-PRG