Séminaires : Séminaire Général de Logique

Equipe(s) : lm,
Responsables :S. Anscombe, V. Bagayoko, D. Basak, H. Fournier, A. Vignati
Email des responsables : sylvy.anscombe@imj-prg.fr, bagayoko@imj-prg.fr, basak@imj-prg.fr, fournier@imj-prg.fr, vignati@imj-prg.fr
Salle : 1013
Adresse :Sophie Germain
Description

Archives


Abonnement à la liste de diffusion


Orateur(s) Esther Elbaz - Equipe de Logique Mathématique - IMJ-PRG,
Titre La théorie des modules des corps séparablement clos
Date04/04/2016
Horaire15:10 à 16:10
Diffusion
Résume
Dans [1], Pilar Dellunde, Françoise Delon et Françoise Point ont considéré les corps séparablement clos de caractéristique non nulle et de degré d’imperfection fixé comme des modules sur l'anneau des endomorphismes

$\mathbbF_p (B) \left \lbrace \alpha \right \lbrace$

où B est une p-base du corps et $\alpha$ est le morphisme de Froebénius. Après avoir axiomatisé cette théorie, les auteurs ont montré qu'elle est complète et admet l'élimination des quantificateurs dans le langage usuel des modules enrichis de symboles de fonctions additives analogues aux fonctions $p$-composantes du corps.
Dans cet exposé, nous présenterons ces résultats.

[1] The Theory of Modules of Separably Closed Fields 1
Pilar Dellunde; Françoise Delon; Françoise Point
The Journal of Symbolic Logic, Vol. 67, No. 3. (Sep., 2002), pp. 997-1015.
Salle1013
AdresseSophie Germain
© IMJ-PRG