Séminaires : Séminaire d'Algèbre

Equipe(s) : gr,
Responsables :J. Alev, D. Hernandez, B. Keller, Th. Levasseur, et S. Morier-Genoud.
Email des responsables : Jacques Alev <jacques.alev@univ-reims.fr>, David Hernandez <david.hernandez@imj-prg.fr>, Bernhard Keller <bernhard.keller@imj-prg.fr>, Thierry Levasseur <Thierry.Levasseur@univ-brest.fr>, Sophie Morier-Genoud <sophie.morier-genoud@imj-prg.fr>
Salle : à distance / remote
Adresse :IHP
Description

Depuis le 23 mars 2020, le séminaire se tient à distance. Pour les liens et mots de passe, merci de contacter l'un des organisateurs ou de souscrire à la liste de diffusion https://listes.math.cnrs.fr/wws/info/paris-algebra-seminar. L'information nécessaire sera envoyée par courrier électronique peu avant chaque exposé. Les notes et transparents sont disponibles ici.

 

Since March 23, 2020, the seminar has been taking place remotely. For the links and passwords, please contact one of the organizers or

subscribe to the mailing list at https://listes.math.cnrs.fr/wws/info/paris-algebra-seminar. The connexion information will be emailed shortly before each talk. Slides and notes are available here.

 


Orateur(s) Julian KULSHAMMER - Stuttgart,
Titre Existence and uniqueness of exact Borel subalgebras
Date12/03/2018
Horaire14:00 à 15:00
Diffusion
RésumeQuasi-hereditary algebras and their infinite analogues, highest weight categories, appear frequently in many areas of representation theory. In joint work with S. Koenig and S. Ovsienko, we showed that every quasi-hereditary algebra can up to Morita equivalence be obtained as the dual of a coring object in the tensor category of bimodules over a directed algebra, the exact Borel subalgebra. Under an additional assumption, the exact Borel subalgebra as well as the coring object are in fact unique up to isomorphism. This is joint work with V. Miemietz.
Salleà distance / remote
AdresseIHP
© IMJ-PRG