Séminaires : Séminaire d'Algèbre

Equipe(s) : gr,
Responsables :J. Alev, D. Hernandez, B. Keller, Th. Levasseur, et S. Morier-Genoud.
Email des responsables : Jacques Alev <jacques.alev@univ-reims.fr>, David Hernandez <david.hernandez@imj-prg.fr>, Bernhard Keller <bernhard.keller@imj-prg.fr>, Thierry Levasseur <Thierry.Levasseur@univ-brest.fr>, Sophie Morier-Genoud <sophie.morier-genoud@imj-prg.fr>
Salle : 001
Adresse :IHP
Description
 

 


Orateur(s) Tristan BOZEC - Lyon,
Titre Composantes irréductibles du cône global nilpotent (Projet ERC QAffine)
Date11/06/2018
Horaire14:00 à 15:00
RésumeÉtant donnée une courbe $X$ de genre $g$, le champ de modules des faisceaux de Higgs de rang r et degré d est de dimension $2(g-1)r^2$. Il peut être vu comme le champ cotangent au champ des faisceaux cohérents de type $(r,d)$ sur $X$, et Laumon a prouvé que le sous-champ des paires de Higgs nilpotentes est Lagrangien. Ce sous-champ est un analogue global du cône nilpotent, et c'est la fibre au-dessus de $0$ de l'application de Hitchin. Il est très singulier, et une étape intéressante dans sa compréhension consiste en l'étude de ses composantes irréductibles. Cette étude est notamment motivée par un résultat reliant le nombre des composantes stables (relativement à la pente usuelle) à la valeur en $1$ du polynôme de Kac associé au carquois à un sommet et $g$ boucles (conjecture de Hausel, Letellier, Rodriguez Villegas prouvée par Mellit). Je donnerai une description combinatoire des composantes de ce cône, et expliquerai lesquelles subsistent dans le lieu semi-stable.
Salle001
AdresseIHP
© IMJ-PRG