Séminaires : Séminaire d'Algèbre

Equipe(s) : gr,
Responsables :J. Alev, D. Hernandez, B. Keller, Th. Levasseur, et S. Morier-Genoud.
Email des responsables : Jacques Alev <jacques.alev@univ-reims.fr>, David Hernandez <david.hernandez@imj-prg.fr>, Bernhard Keller <bernhard.keller@imj-prg.fr>, Thierry Levasseur <Thierry.Levasseur@univ-brest.fr>, Sophie Morier-Genoud <sophie.morier-genoud@imj-prg.fr>
Salle : Info sur https://researchseminars.org/seminar/paris-algebra-seminar
Adresse :
Description

Le séminaire est prévu en présence à l'IHP et à distance. Pour les liens et mots de passe, merci de contacter l'un des organisateurs ou de souscrire à la liste de diffusion https://listes.math.cnrs.fr/wws/info/paris-algebra-seminar. L'information nécessaire sera envoyée par courrier électronique peu avant chaque exposé. Les notes et transparents sont disponibles ici.

 

Since March 23, 2020, the seminar has been taking place remotely. For the links and passwords, please contact one of the organizers or

subscribe to the mailing list at https://listes.math.cnrs.fr/wws/info/paris-algebra-seminar. The connexion information will be emailed shortly before each talk. Slides and notes are available here.

 


Orateur(s) Laura FEDELE - Paris,
Titre Generators for quantum finite W-algebras in type A
Date05/11/2018
Horaire14:00 à 15:00
Diffusion
RésumeA major contribution to the theory of quantum finite W-algebras in type A comes from the work of J. Brundan and A. Kleshchev who, investigating the relationship between W-algebras and Yangians, achieved important results concerning both their structure and their representation theory. In this framework, for a quantum finite W-algebra in type A, associated to any nilpotent element and arbitrary good grading, we can construct a matrix of Yangian type L(z) which encodes its generators and relations, generalizing the results of A. De Sole, V. Kac and D. Valeri for classical affine W-algebras. We can then express L(z) in a nicer form: when the good grading is associated to a pyramid that is aligned to the right, we use a recursive formula to explicitly construct a matrix W(z) which provides us with a finite set of generators for the W-algebra satisfying Premet's conditions, and prove that the matrix L(z) can be obtained as a generalized quasideterminant of W(z). Finally, we explain how to generalize these results to an arbitrary good grading (and an arbitrary choice of an isotropic subspace), using fundamental results about the structure of quantum finite W-algebras due to W.L. Gan and V. Ginzburg, and J. Brundan and S. Goodwin. This is a joint work with A. De Sole and D. Valeri.
SalleInfo sur https://researchseminars.org/seminar/paris-algebra-seminar
Adresse
© IMJ-PRG