Séminaires : Séminaire d'Algèbre

Equipe(s) : gr,
Responsables :J. Alev, D. Hernandez, B. Keller, Th. Levasseur, et S. Morier-Genoud.
Email des responsables : Jacques Alev <jacques.alev@univ-reims.fr>, David Hernandez <david.hernandez@imj-prg.fr>, Bernhard Keller <bernhard.keller@imj-prg.fr>, Thierry Levasseur <Thierry.Levasseur@univ-brest.fr>, Sophie Morier-Genoud <sophie.morier-genoud@imj-prg.fr>
Salle : 001
Adresse :IHP
Description
 

 


Orateur(s) Baptiste ROGNERUD - Bielefeld,
Titre Les ensembles ordonnés de Tamari sont Calabi-Yau fractionnaires
Date19/11/2018
Horaire14:00 à 15:00
RésumeLes ensembles ordonnés de Tamari sont des ordres (partiels) classiques et bien étudiés. Ils apparaissent de façon naturelle en théorie des représentations des algèbres comme ensemble ordonnés des modules basculants sur un carquois équiorienté de type $A$ mais aussi comme ensemble cambrien du même type. Chapoton a été un des premiers à se rendre compte que la théorie des représentations des algèbres d'incidences de ces ensembles est en elle-même extrêmement fascinante. Il démontre en 2004 que les matrices de Coxeter des ensembles ordonnés de Tamari sont périodiques. Peu de temps après, il conjecture un résultat plus fort : les catégories dérivées bornées des algèbres d'incidences des ensembles ordonnés de Tamari sont Calabi-Yau fractionnaires. c'est-à-dire qu'une certaine puissance de leur foncteur de Serre est isomorphe à un foncteur de décalage. Dans cet exposé, après avoir donné des exemples élémentaires d'ensembles ordonnés Calabi-Yau fractionnaires, je présenterai les ingrédients principaux de la démonstration de cette conjecture.
Salle001
AdresseIHP
© IMJ-PRG