Séminaires : Séminaire d'Algèbre

Equipe(s) : gr,
Responsables :J. Alev, D. Hernandez, B. Keller, Th. Levasseur, et S. Morier-Genoud.
Email des responsables : Jacques Alev <jacques.alev@univ-reims.fr>, David Hernandez <david.hernandez@imj-prg.fr>, Bernhard Keller <bernhard.keller@imj-prg.fr>, Thierry Levasseur <Thierry.Levasseur@univ-brest.fr>, Sophie Morier-Genoud <sophie.morier-genoud@imj-prg.fr>
Salle : à distance / remote
Adresse :IHP

Depuis le 23 mars 2020, le séminaire se tient à distance. Pour les liens et mots de passe, merci de contacter l'un des organisateurs ou de souscrire à la liste de diffusion https://listes.math.cnrs.fr/wws/info/paris-algebra-seminar. L'information nécessaire sera envoyée par courrier électronique peu avant chaque exposé. Les notes et transparents sont disponibles ici.


Since March 23, 2020, the seminar has been taking place remotely. For the links and passwords, please contact one of the organizers or

subscribe to the mailing list at https://listes.math.cnrs.fr/wws/info/paris-algebra-seminar. The connexion information will be emailed shortly before each talk. Slides and notes are available here.


Orateur(s) Andrea PASCUAL - Uppsala,
Titre Self-injective Jacobian algebras from Postnikov diagrams
Horaire14:00 à 15:00
RésumeA Postnikov diagram is a collection of curves in a disk subject to some axioms depending on two integers $1\leq k\leq n$. The arising combinatorics is related to that of the cluster structure of the coordinate ring of the Grassmannian of $k$-subspaces of $\mathbb C^n$. To a Postnikov diagram one can associate a finite-dimensional Jacobian algebra, by work of Oh-Postnikov-Speyer. Baur-King-Marsh later proved that the Jacobian algebra is isomorphic to the stable endomorphism algebra of a cluster tilting object in a 2-Calabi-Yau category introduced by Jensen-King-Su. In this talk I will explain how to characterise self-injectivity of this Jacobian algebra combinatorially. I will also show some new examples of planar self-injective quivers with potential one gets in this way (the terminology is that of Herschend-Iyama), and explain a connection to 2-dimensional Auslander-Reiten theory.
Salleà distance / remote