Séminaires : Séminaire Général de Logique

Equipe(s) : lm,
Responsables :O. Finkel, T. Ibarlucía, A. Khélif, S. Rideau, C. Sureson
Email des responsables :
Salle : salle 2015
Adresse :Sophie Germain
Description

ArchivesRetour ligne automatique
Abonnement à la liste de diffusion


Orateur(s) Slawomir Solecki - University of Illinois at Urbana-Champaign, USA,
Titre Menger compacta as projective Fraisse limits with emphasis on dimension one
Date29/05/2017
Horaire15:10 à 16:10
RésumeIn each dimension d, there exists a canonical compact, second countable space, called the d-dimensional Menger space, with certain universality and homogeneity properties. For d = 0, it is the Cantor set, for d = infinity, it is the Hilbert cube. I will concentrate on the 1-dimensional Menger space. I will prove that it is a quotient of a projective Fraisse limit. I will describe how a property of projective Fraisse limits coming from Logic, called the projective extension property, can be used to prove high homogeneity of the 1-dimensional Menger space.

This is joint work with Aristotelis Panagiotopoulos.
Sallesalle 2015
AdresseSophie Germain
© IMJ-PRG