Séminaires : Structures algébriques ordonnées

Equipe(s) : lm,
Responsables :F. Delon, M. Dickmann, D. Gondard, T. Servi
Email des responsables :
Salle : 1016
Adresse :Sophie Germain
Description


Mardi de 14h00 à 15h45
Page du séminaire et programmeRetour ligne automatique
Abonnement à la liste de diffusion


Orateur(s) Pantelis Eleftheriou - Universität Konstanz,
Titre Counting rational points in tame expansions of o-minimal structures by a dense set
Date13/03/2018
Horaire14:15 à 15:45
RésumeATTENTION : EXCEPTIONNELLEMENT, CET EXPOSÉ AURA LIEU À L’INSTITUT HENRI POINCARÉ.
We work in an expansion (M, P) of an o-minimal structure M by a dense set P, such that three tameness conditions hold. Examples include dense pairs, expansions of M by an independent set, and expansions by a multiplicative group with the Mann property. In the first part of the talk, we give a structure theorem for definable sets in (M, P), in analogy with the cell decomposition theorem known for o-minimal structures, and analyze the relevant notion of dimension (joint with Günaydın and Hieronymi). In the second part, we propose a generalized "Pila-Wilkie" statement and prove it in the three examples. Namely, if X is a definable set in (M, P) and contains many rational points, then it is dense in an infinite semialgebraic set. The proof of the statement is by reduction to the standard Pila-Wilkie theorem, using the structure theorem.
Salle1016
AdresseSophie Germain
© IMJ-PRG