Séminaires : Séminaire de Logique Lyon-Paris

Equipe(s) : lm,
Responsables :O. Finkel, A. Khélif, S. Rideau, T. Tsankov, A. Vignati
Email des responsables :
Salle : Zoom ID: 824 8220 9628; s'inscrire à la liste ou contacter silvain.rideau@imj-prg.fr pour le mot de passe.
Adresse :
Description

ArchivesRetour ligne automatique
Abonnement à la liste de diffusion


Orateur(s) Paola d'Aquino - Università della Campania,
Titre Roots of exponential polynomials
Date21/01/2019
Horaire15:10 à 16:10
Diffusion
RésumeZilber identifies a new class of exponential fields (pseudo-exponential fields), and proves a categoricity result for every uncountable cardinality. He conjectures that the classical complex exponential field is the unique model of power continuum. Some of the axioms of Zilber have a geometrical nature and they guarantee solvability of systems of exponential equations over the field. In the last 15 years much attention has been given to extend classical results for the complex exponential field to the pseudo-exponential fields, and vice versa much effort has been put in proving for the complex field properties of solutions of exponential polynomials which follow from the axioms of Zilber. Analytic methods have been substituted by algebraic and geometrical arguments. I will review some of the first results on this and I will present more recent ones obtained in collaboration with A. Fornasiero and G. Terzo

SalleZoom ID: 824 8220 9628; s'inscrire à la liste ou contacter silvain.rideau@imj-prg.fr pour le mot de passe.
Adresse
© IMJ-PRG