Séminaires : Géométrie énumérative

Equipe(s) : aa,
Responsables :Penka Georgieva, Ilia Itenberg.
Email des responsables :
Salle :
Adresse :
Description

Orateur(s) Paolo Rossi - Università degli Studi di Padova,
Titre Quadratic double ramification integrals and KdV on the non-commutative torus
Date22/02/2019
Horaire10:30 à 11:30
RésumeIt's a result of Richard Hain that the restriction of the double ramification cycle to the space of compact type curves (i.e. stable curves with no non-separating nodes) is Θg/g!, where Θ is the theta divisor in the universal Jacobian (suitably pulled back to the moduli space itself via the marked points). A natural completion of this class is given by exp(Θ), which gives an infinite rank partial cohomological field theory. To such an object one can attach a double ramification hierarchy (thereby putting into play a second DR cycle, hence the "quadratic" in the title). It is possible to compute this hierarchy and trade its infinite rank for an extra space dimension, hence obtaining an integrable hierarchy in 2+1 dimensions which is the natural extension of the usual KdV hierarchy on a non-commutative torus. Its quantization is also provided, obtaining an integrable (2+1) non-relativistic quantum field theory on the non-commutative torus.
Salle
Adresse
© IMJ-PRG