Séminaires : Géométrie énumérative

Equipe(s) : aa, tga,
Responsables :Penka Georgieva, Elba Garcia-Failde, Ilia Itenberg, Alessandro Chiodo
Email des responsables : penka.georgieva@imj-prg.fr
Salle : 1516 - 413
Adresse :Jussieu
Description

URL: https://webusers.imj-prg.fr/~penka.georgieva/EGSeminar.html


Orateur(s) Alex Degtyarev - Bilkent Univ,
Titre Tritangents to sextic curves via Niemeier lattices
Date14/06/2019
Horaire10:30 à 11:30
Diffusion
RésumeI suggest a new approach, based on the embedding of the (modified) Néron--Severi lattice to a Niemeier lattice, to the following conjecture: The number of tritangents to a smooth sextic is 72, 66 (each realized by a single curve), or less. The maximal number of real tritangents to a real smooth sextic is 66. (Observed are all counts except 65 and 63.) The computation becomes much easier (linear algebra in well-studied lattices rather than abstract number theory), and it has been completed for all but Leech lattices. At present, I am 99% sure that I can eliminate the Leech lattice, settling the above conjecture.
Salle1516 - 413
AdresseJussieu
© IMJ-PRG