Séminaires : Séminaire Général de Logique

Equipe(s) : lm,
Responsables :O. Finkel, T. Ibarlucía, A. Khélif, S. Rideau, A. Vignati
Email des responsables :
Salle : salle 2015
Adresse :Sophie Germain
Description

ArchivesRetour ligne automatique
Abonnement à la liste de diffusion


Orateur(s) Konstantin Slutsky - Équipe de logique mathématique, IMJ-PRG,
Titre Orbit Equivalence Relations of Borel Flows
Date14/10/2019
Horaire15:15 à 16:15
Résume
We present an overview of the theory of orbit equivalence relations of Borel flows, (i.e. free Borel actions of the Euclidean space). While more familiar in the framework of countable group actions, orbit equivalence is an important tool in understanding the structure of $\mathbb{R}^n$ actions just as well.  We will survey a number of related results including:
- the classification of Borel flows up to Lebesgue Orbit Equivalence
  (which can be viewed as the analog of Dougherty--Jackson--Kechris classification of hyperfinite equivalence relations);
- connections of this classification to Rudolph's theorem about regular cross sections;
- Topological Orbit Equivalence, including the Miller--Rosendal theorem on time-change equivalence.
Salle2015
AdresseSophie Germain
© IMJ-PRG