Séminaires : Géométrie énumérative

Equipe(s) : aa,
Responsables :Penka Georgieva, Ilia Itenberg.
Email des responsables :
Salle :
Adresse :
Description

Orateur(s) Yizhen Zhao - IMJ-PRG,
Titre Landau-Ginzburg/Calabi-Yau correspondence for a complete intersection via matrix factorizations
Date21/11/2019
Horaire16:00 à 17:00
Résume

In this talk, I will introduce two enumerative theories coming from a variation of GIT stability condition. One of them is the Gromov-Witten theory of a Calabi-Yau complete intersection; the other one is a theory of a family of isolated singularities fibered over a projective line, which is developed by Fan, Jarvis, and Ruan recently. I will show these two theories are equivalent after analytic continuation. For Calabi-Yau complete intersections of two cubics, I will show that this equivalence is directly related - via Chern character - to the equivalences between the derived category of coherent sheaves and that of matrix factorizations of the singularities. This generalizes Chiodo-Iritani-Ruan's theorem matching Orlov's equivalences and quantum LG/CY correspondence for hypersurfaces. 

Salle15-25-502
AdresseJussieu
© IMJ-PRG