Séminaires : Séminaire d'Algèbre

Equipe(s) : gr,
Responsables :J. Alev, D. Hernandez, B. Keller, Th. Levasseur, et S. Morier-Genoud.
Email des responsables : Jacques Alev <jacques.alev@univ-reims.fr>, David Hernandez <david.hernandez@imj-prg.fr>, Bernhard Keller <bernhard.keller@imj-prg.fr>, Thierry Levasseur <Thierry.Levasseur@univ-brest.fr>, Sophie Morier-Genoud <sophie.morier-genoud@imj-prg.fr>
Salle : à distance / remote
Adresse :IHP
Description

Depuis le 23 mars 2020, le séminaire se tient à distance. Pour les liens et mots de passe, merci de contacter l'un des organisateurs ou de souscrire à la liste de diffusion https://listes.math.cnrs.fr/wws/info/paris-algebra-seminar. L'information nécessaire sera envoyée par courrier électronique peu avant chaque exposé. Les notes et transparents sont disponibles ici.

 

Since March 23, 2020, the seminar has been taking place remotely. For the links and passwords, please contact one of the organizers or

subscribe to the mailing list at https://listes.math.cnrs.fr/wws/info/paris-algebra-seminar. The connexion information will be emailed shortly before each talk. Slides and notes are available here.

 


Orateur(s) Theo RAEDSCHELDERS - Vrije Universiteit Brussel,
Titre Proper connective differential graded algebras and their geometric realizations
Date20/04/2020
Horaire14:00 à 15:00
Diffusion
Résume

A dg algebra $A$ admits a geometric realization if the category of perfect dg $A$-modules can be embedded into the bounded derived category of a smooth projective variety. In this talk, I will first give an overview of Orlov's results on geometric realizations of dg algebras, and then explain how all dg algebras with finite dimensional cohomology, which are moreover concentrated in non-positive degrees, admit such realizations. The proof is based on a generalization of the Auslander algebra of a finite dimensional algebra to the setting of finite-dimensional A-infinity algebras. If time allows, I will discuss several corollaries related to finite-dimensional models, noncommutative motives, and non-Fourier-Mukai functors. This is based on joint work with Alice Rizzardo, Greg Stevenson, and Michel Van den Bergh.

Salleà distance / remote
AdresseIHP
© IMJ-PRG