Séminaires : Séminaire de Logique Lyon-Paris

Equipe(s) : lm,
Responsables :S. Anscombe, O. Finkel, A. Khélif, S. Rideau, T. Tsankov, A. Vignati
Email des responsables :
Salle : Contacter Silvain Rideau ou Alessandro Vignati
Adresse :

ArchivesRetour ligne automatique
Abonnement à la liste de diffusion

Orateur(s) Luca Motto Ros - Université de Turin,
Titre Anti-classification results for Archimedean groups
Horaire16:00 à 17:15
RésumeWe study the complexity of the isomorphism relation for countable Archimedean groups, both in terms of Borel reducibility and with respect to the theory of potential classes developed by Hjorth, Kechris and Louveau. This will lead to a number of anti-classification results for such groups. We will also present similar results concerning the bi-embeddability relation over countable Archimedean groups and, if time permits, we will speak about analogous problems for countable models of certain o-minimal theories (ordered divisible abelian groups, real closed fields). Joint work with F. Calderoni, D. Marker, and A. Shani.
SalleContacter Silvain Rideau ou Alessandro Vignati