Séminaires : Séminaire d'Algèbre

Equipe(s) : gr,
Responsables :J. Alev, D. Hernandez, B. Keller, Th. Levasseur, et S. Morier-Genoud.
Email des responsables : Jacques Alev <jacques.alev@univ-reims.fr>, David Hernandez <david.hernandez@imj-prg.fr>, Bernhard Keller <bernhard.keller@imj-prg.fr>, Thierry Levasseur <Thierry.Levasseur@univ-brest.fr>, Sophie Morier-Genoud <sophie.morier-genoud@imj-prg.fr>
Salle : à distance / remote
Adresse :IHP
Description

Depuis le 23 mars 2020, le séminaire se tient à distance. Pour les liens et mots de passe, merci de contacter l'un des organisateurs ou de souscrire à la liste de diffusion https://listes.math.cnrs.fr/wws/info/paris-algebra-seminar. L'information nécessaire sera envoyée par courrier électronique peu avant chaque exposé. Les notes et transparents sont disponibles ici.

 

Since March 23, 2020, the seminar has been taking place remotely. For the links and passwords, please contact one of the organizers or

subscribe to the mailing list at https://listes.math.cnrs.fr/wws/info/paris-algebra-seminar. The connexion information will be emailed shortly before each talk. Slides and notes are available here.

 


Orateur(s) Emmanuel LETELLIER - IMJ-PRG,
Titre E-series of character varieties associated with non orientable surfaces
Date14/12/2020
Horaire14:00 à 15:00
Diffusion
RésumeIn this talk we will be interested in two kinds of character varieties associated to a compact non-orientable surface S. The first one is just the quotient stack of all representations of the fundamental group of S in GL(n,C). For the second one, we consider k punctures of S as well as k semisimple conjugacy classes of GL(n,C). We then consider the stack of anti-invariant local systems on the orientation covering of S with local monodromies around the punctures in the prescribed conjugacy classes. We compute the number of points of these spaces over finite fields and we give a cohomological interpretation of our counting formulas. For the second kind of character varieties, we give a conjectural formula for the mixed Poincaré series in terms of Macdonald symmetric functions.
Salleà distance / remote
AdresseIHP
© IMJ-PRG