Séminaires : Séminaire d'Algèbre

Equipe(s) : gr,
Responsables :J. Alev, D. Hernandez, B. Keller, Th. Levasseur, et S. Morier-Genoud.
Email des responsables : Jacques Alev <jacques.alev@univ-reims.fr>, David Hernandez <david.hernandez@imj-prg.fr>, Bernhard Keller <bernhard.keller@imj-prg.fr>, Thierry Levasseur <Thierry.Levasseur@univ-brest.fr>, Sophie Morier-Genoud <sophie.morier-genoud@imj-prg.fr>
Salle : à distance / remote. Info sur https://researchseminars.org/seminar/paris-algebra-seminar
Adresse :IHP
Description

Depuis le 23 mars 2020, le séminaire se tient à distance. Pour les liens et mots de passe, merci de contacter l'un des organisateurs ou de souscrire à la liste de diffusion https://listes.math.cnrs.fr/wws/info/paris-algebra-seminar. L'information nécessaire sera envoyée par courrier électronique peu avant chaque exposé. Les notes et transparents sont disponibles ici.

 

Since March 23, 2020, the seminar has been taking place remotely. For the links and passwords, please contact one of the organizers or

subscribe to the mailing list at https://listes.math.cnrs.fr/wws/info/paris-algebra-seminar. The connexion information will be emailed shortly before each talk. Slides and notes are available here.

 


Orateur(s) Estanislao HERSCOVICH - ,
Titre Double quasi-Poisson algebras are pre-Calabi-Yau
Date18/01/2021
Horaire14:00 à 15:00
Diffusion
RésumeDouble Poisson and double quasi-Poisson algebras were introduced by M. Van den Bergh in his study of noncommutative quasi-Poisson geometry. Namely, they satisfy the so-called Kontsevich-Rosenberg principle, since the representation scheme of a double (quasi-)Poisson algebra has a natural (quasi-)Poisson structure. On the other hand, N. Iyudu and M. Kontsevich found a link between double Poisson algebras and pre-Calabi-Yau algebras, a notion introduced by Kontsevich and Y. Vlassopoulos. The aim of this talk will be to explain how such a connection can be extended to double quasi-Poisson algebras, which thus give rise to pre-Calabi-Yau algebras. This pre-Calabi-Yau structure is however more involved in the case of double quasi-Poisson algebras since, in particular, we get an infinite number of nonvanishing higher multiplications for the associated pre-Calabi-Yau algebra, which involve the Bernoulli numbers.
Salleà distance / remote. Info sur https://researchseminars.org/seminar/paris-algebra-seminar
AdresseIHP
© IMJ-PRG