Séminaires : Séminaire de Logique Lyon-Paris

Equipe(s) : lm,
Responsables :S. Anscombe, O. Finkel, A. Khélif, S. Rideau, T. Tsankov, A. Vignati
Email des responsables :
Salle : ID de réunion : 825 2397 5662 Code secret : 523743
Adresse :
Description

ArchivesRetour ligne automatique
Abonnement à la liste de diffusion


Orateur(s) Joel Hamkins - University of Oxford,
Titre Determinacy for proper class games
Date14/04/2021
Horaire16:00 à 17:15
Diffusion https://u-paris.zoom.us/j/87511487359?pwd=cWRqZzF3QU1laS9URERCNEFRdVFBUT09
RésumeThe principle of open determinacy for class games — two-player games of perfect information with plays of length ω, where the moves are chosen from a possibly proper class, such as games on the ordinals — is not provable in Zermelo-Fraenkel set theory ZFC or Gödel-Bernays set theory GBC, if these theories are consistent, because provably in ZFC there is a definable open proper class game with no definable winning strategy. In fact, the principle of open determinacy and even merely clopen determinacy for class games implies Con(ZFC) and iterated instances Con(Con(ZFC)) and more, because it implies that there is a satisfaction class for first-order truth, and indeed a transfinite tower of truth predicates for iterated truth-about-truth, relative to any class parameter. This is perhaps explained, in light of the Tarskian recursive definition of truth, by the more general fact that the principle of clopen determinacy is exactly equivalent over GBC to the principle of elementary transfinite recursion ETR over well-founded class relations. Meanwhile, the principle of open determinacy for class games is strictly stronger, although it is provable in the stronger theory GBC+ Pi^1_1-comprehension, a proper fragment of Kelley-Morse set theory KM.
http://jdh.hamkins.org/determinacy-for-proper-class-games-seminaire-de-logique-lyon-paris-april-2021/
SalleID de réunion : 825 2397 5662 Code secret : 523743
Adresse
© IMJ-PRG