Séminaires : Séminaire d'Algèbre

Equipe(s) : gr,
Responsables :J. Alev, D. Hernandez, B. Keller, Th. Levasseur, et S. Morier-Genoud.
Email des responsables : Jacques Alev <jacques.alev@univ-reims.fr>, David Hernandez <david.hernandez@imj-prg.fr>, Bernhard Keller <bernhard.keller@imj-prg.fr>, Thierry Levasseur <Thierry.Levasseur@univ-brest.fr>, Sophie Morier-Genoud <sophie.morier-genoud@imj-prg.fr>
Salle : à distance / remote
Adresse :IHP
Description

Depuis le 23 mars 2020, le séminaire se tient à distance. Pour les liens et mots de passe, merci de contacter l'un des organisateurs ou de souscrire à la liste de diffusion https://listes.math.cnrs.fr/wws/info/paris-algebra-seminar. L'information nécessaire sera envoyée par courrier électronique peu avant chaque exposé. Les notes et transparents sont disponibles ici.

 

Since March 23, 2020, the seminar has been taking place remotely. For the links and passwords, please contact one of the organizers or

subscribe to the mailing list at https://listes.math.cnrs.fr/wws/info/paris-algebra-seminar. The connexion information will be emailed shortly before each talk. Slides and notes are available here.

 


Orateur(s) Alexander VESELOV - Loughborough,
Titre Automorphic Lie algebras and modular forms
Date22/03/2021
Horaire14:00 à 15:00
Diffusion
RésumeThe automorphic Lie algebras can be viewed as generalisations of twisted loop Lie algebras, when a group G acts holomorphically and discretely on a Riemann surface and by automorphisms on the chosen Lie algebra. In the talk we will discuss the automorphic Lie algebras of modular type, when G is a finite index subgroup of the modular group SL(2,Z)$ acting on the upper half plane. In the case when the action of G can be extended to SL(2,C) we prove analogues of Kac’s isomorphism theorem for the twisted loop Lie algebras. For the modular group and some of its principal congruence subgroups we provide an explicit description of such isomorphisms using the classical theory of modular forms. The talk is based on the ongoing joint work with Vincent Knibbeler and Sara Lombardo.
Salleà distance / remote
AdresseIHP
© IMJ-PRG