Séminaires : Séminaire de Logique Lyon-Paris

Equipe(s) : lm,
Responsables :S. Anscombe, O. Finkel, A. Khélif, S. Rideau, T. Tsankov, A. Vignati
Email des responsables :
Salle : Contacter Silvain Rideau ou Alessandro Vignati
Adresse :
Description

ArchivesRetour ligne automatique
Abonnement à la liste de diffusion


Orateur(s) James Hanson - University of Wisconsin-Madison,
Titre A Versatile Counterexample for Invariant Types and Keisler Measures outside NIP
Date03/03/2021
Horaire16:00 à 17:15
Diffusion https://u-paris.zoom.us/rec/share/FahyElVXF5iqVbEHX5kMUK3j4Iw2UZR3JTh8lxCRzgTV9YjhjBPIBvLksifllHk.UaaMom-EluUkE1TC
RésumeGlobal types invariant over small sets of parameters are a central concept in stability and neo-stability theory. When dealing with NIP theories in particular, it is often useful to generalize to Keisler measures, finitely additive probability measures on the Boolean algebra of definable sets. Invariant types in NIP theories behave very regularly, and these properties extend readily to invariant measures. In this talk, we will present an ornate but conceptually simple theory that is the first known counterexample to two non-NIP generalizations of statements regarding types and measures as well as the second known (correct) counterexample to another such generalization. Joint work with Gabriel Conant and Kyle Gannon.
SalleContacter Silvain Rideau ou Alessandro Vignati
Adresse
© IMJ-PRG