Séminaires : Séminaire d'Algèbre

Equipe(s) : gr,
Responsables :J. Alev, D. Hernandez, B. Keller, Th. Levasseur, et S. Morier-Genoud.
Email des responsables : Jacques Alev <jacques.alev@univ-reims.fr>, David Hernandez <david.hernandez@imj-prg.fr>, Bernhard Keller <bernhard.keller@imj-prg.fr>, Thierry Levasseur <Thierry.Levasseur@univ-brest.fr>, Sophie Morier-Genoud <sophie.morier-genoud@imj-prg.fr>
Salle : Info sur https://researchseminars.org/seminar/paris-algebra-seminar
Adresse :
Description

Le séminaire est prévu en présence à l'IHP et à distance. Pour les liens et mots de passe, merci de contacter l'un des organisateurs ou de souscrire à la liste de diffusion https://listes.math.cnrs.fr/wws/info/paris-algebra-seminar. L'information nécessaire sera envoyée par courrier électronique peu avant chaque exposé. Les notes et transparents sont disponibles ici.

 

Since March 23, 2020, the seminar has been taking place remotely. For the links and passwords, please contact one of the organizers or

subscribe to the mailing list at https://listes.math.cnrs.fr/wws/info/paris-algebra-seminar. The connexion information will be emailed shortly before each talk. Slides and notes are available here.

 


Orateur(s) Nicholas WILLIAMS - Leicester,
Titre The higher Stasheff–Tamari orders in representation theory
Date19/04/2021
Horaire14:00 à 15:00
Diffusion
RésumeOppermann and Thomas show that tilting modules over Iyama's higher Auslander algebras of type A are in bijection with triangulations of even-dimensional cyclic polytopes. Triangulations of cyclic polytopes are partially ordered in two natural ways known as the higher Stasheff–Tamari orders, which were introduced in the 1990s by Kapranov, Voevodsky, Edelman, and Reiner as higher-dimensional generalisations of the Tamari lattice. These two partial orders were conjectured to be equal in 1996 by Edelman and Reiner, but this is still an open problem. We show how the higher Stasheff–Tamari orders correspond in even dimensions to natural orders on tilting modules which were studied by Riedtmann, Schofield, Happel, and Unger. This then allows us to complete the picture of Oppermann and Thomas by showing that triangulations of odd-dimensional cyclic polytopes correspond to equivalence classes of d-maximal green sequences, which we introduce as higher-dimensional analogues of Keller’s maximal green sequences. We show that the higher Stasheff–Tamari orders correspond to natural orders on equivalence classes of d-maximal green sequences, which relate to the no-gap conjecture of Brüstle, Dupont, and Perotin. If time permits, we will also briefly discuss more recent work concerning the relation between the first higher Stasheff–Tamari orders and the higher Bruhat orders, which are higher-dimensional analogues of the weak Bruhat order on the symmetric group.
SalleInfo sur https://researchseminars.org/seminar/paris-algebra-seminar
Adresse
© IMJ-PRG