Séminaires : Séminaire de Logique Lyon-Paris

Equipe(s) : lm,
Responsables :S. Anscombe, O. Finkel, A. Khélif, S. Rideau, T. Tsankov, A. Vignati
Email des responsables :
Salle : Contacter Silvain Rideau ou Alessandro Vignati
Adresse :
Description

ArchivesRetour ligne automatique
Abonnement à la liste de diffusion


Orateur(s) Hector Pasten - Pontificia Universidad Católica de Chile,
Titre A framework for the DPRM property on structures
Date07/04/2021
Horaire16:00 à 17:15
Diffusion
RésumeA celebrated result by Davis, Putnam, Robinson and Matiyasevich shows that over the integers, listable sets are the same as Diophantine sets. There is the question of whether other interesting rings satisfy the same DPRM property and the most common setting where this problem has been considered is that of recursive rings. However, recursive rings do not seem to be the most appropriate framework: one would like to allow more general structures (not just rings) and it seems natural to allow the signature of the structure to be expanded by positive-existentially definable relations which, in general, might fail to be recursive. In this talk we will discuss the DPRM property on structures endowed with a listable presentation (rather than a recursive one) and we will present several results addressing foundational material around this notion such as uniqueness of the listable presentation, transference of the DPRM structure under interpretation, and characterization of the DPRM property in terms of p.e. bi-interpretability. As a consequence, we will obtain proofs of several folklore "facts" repeatedly claimed as results elsewhere in the literature but whose proofs are absent. Another application of the theory is that it will allow us to link various Diophantine conjectures to the question of whether or not the DPRM property holds for the field of rational numbers and for k(t) with k a finite field.
SalleContacter Silvain Rideau ou Alessandro Vignati
Adresse
© IMJ-PRG