Séminaires : Séminaire Général de Logique

Equipe(s) : lm,
Responsables :S. Anscombe, A. Vignati
Email des responsables : sylvy.anscombe@imj-prg.fr, vignati@imj-prg.fr
Salle : 1013
Adresse :Sophie Germain
Description

Archives


Abonnement à la liste de diffusion


Orateur(s) Anush Tserunyan - McGill University,
Titre Backward and forward ergodic theorems along trees
Date26/05/2021
Horaire16:00 à 17:15
Diffusion https://u-paris.zoom.us/rec/share/f3Rkljh1DzXbDUllrye21BnK5OMUWSWrH4kkGGvRkGS6V8oerMJYfl586Eipq96F.LB4Eyvr8uHR1Yqhi
RésumeIn the classical pointwise ergodic theorem for a probability measure preserving (pmp) transformation $T$, one takes averages of a given integrable function over the intervals $\{x, T(x), T^2(x), \hdots, T^n(x)\}$ in the forward orbit of the point $x$. In joint work with Jenna Zomback, we prove a “backward” ergodic theorem for a countable-to-one pmp $T$, where the averages are taken over arbitrary subtrees of the graph of $T$ that are rooted at $x$ and lie behind $x$ (in the direction of $T^{-1}$). Somewhat surprisingly, this theorem yields (forward) ergodic theorems for countable groups, in particular, one for pmp actions of free groups of finite rank where the averages are taken along arbitrary subtrees of the standard Cayley graph rooted at the identity. This strengthens results of Grigorchuk (1987), Nevo (1994), and Bufetov (2000).
Salle1013
AdresseSophie Germain
© IMJ-PRG