Séminaires : Séminaire d'Algèbre

Equipe(s) : gr,
Responsables :J. Alev, D. Hernandez, B. Keller, Th. Levasseur, et S. Morier-Genoud.
Email des responsables : Jacques Alev <jacques.alev@univ-reims.fr>, David Hernandez <david.hernandez@imj-prg.fr>, Bernhard Keller <bernhard.keller@imj-prg.fr>, Thierry Levasseur <Thierry.Levasseur@univ-brest.fr>, Sophie Morier-Genoud <sophie.morier-genoud@imj-prg.fr>
Salle : à distance / remote
Adresse :IHP
Description

Depuis le 23 mars 2020, le séminaire se tient à distance. Pour les liens et mots de passe, merci de contacter l'un des organisateurs ou de souscrire à la liste de diffusion https://listes.math.cnrs.fr/wws/info/paris-algebra-seminar. L'information nécessaire sera envoyée par courrier électronique peu avant chaque exposé. Les notes et transparents sont disponibles ici.

 

Since March 23, 2020, the seminar has been taking place remotely. For the links and passwords, please contact one of the organizers or

subscribe to the mailing list at https://listes.math.cnrs.fr/wws/info/paris-algebra-seminar. The connexion information will be emailed shortly before each talk. Slides and notes are available here.

 


Orateur(s) Sachin GAUTAM - Ohio,
Titre Poles of finite-dimensional representations of Yangians
Date17/05/2021
Horaire14:00 à 15:00
Diffusion
RésumeThe Yangian associated to a simple Lie algebra g is a Hopf algebra which quantizes the Lie algebra of polynomials g[t]. Its finite-dimensional representation theory has remarkable connections with equivariant cohomology, combinatorics, integrable systems and mathematical physics. Concretely, a finite-dimensional representation of the Yangian is prescribed by a finite collection of operators whose coefficients are rational functions, satisfying a list of commutation relations. In this talk I will give an explicit combinatorial description of the sets of poles of the rational currents of the Yangian, acting on an irreducible finite-dimensional representation. This result uses the generalization of Baxter's Q-operators obtained by Frenkel-Hernandez. Based on a joint work with Curtis Wendlandt (arxiv:2009.06427).
Salleà distance / remote
AdresseIHP
© IMJ-PRG