Séminaires : Séminaire d'Algèbre

Equipe(s) : gr,
Responsables :J. Alev, D. Hernandez, B. Keller, Th. Levasseur, et S. Morier-Genoud.
Email des responsables : Jacques Alev <jacques.alev@univ-reims.fr>, David Hernandez <david.hernandez@imj-prg.fr>, Bernhard Keller <bernhard.keller@imj-prg.fr>, Thierry Levasseur <Thierry.Levasseur@univ-brest.fr>, Sophie Morier-Genoud <sophie.morier-genoud@imj-prg.fr>
Salle : à distance / remote
Adresse :IHP
Description

Depuis le 23 mars 2020, le séminaire se tient à distance. Pour les liens et mots de passe, merci de contacter l'un des organisateurs ou de souscrire à la liste de diffusion https://listes.math.cnrs.fr/wws/info/paris-algebra-seminar. L'information nécessaire sera envoyée par courrier électronique peu avant chaque exposé. Les notes et transparents sont disponibles ici.

 

Since March 23, 2020, the seminar has been taking place remotely. For the links and passwords, please contact one of the organizers or

subscribe to the mailing list at https://listes.math.cnrs.fr/wws/info/paris-algebra-seminar. The connexion information will be emailed shortly before each talk. Slides and notes are available here.

 


Orateur(s) Justine FASQUEL - Lille,
Titre Rationality at admissible levels of the simple W-algebras associated with subregular nilpotent elements in sp_4
Date14/06/2021
Horaire14:00 à 15:00
Diffusion
RésumeW-algebras are certain vertex algebras obtained from the quantized Drinfeld-Sokolov reduction of universal affine vertex algebras associated with a complex parameter k and a simple complex Lie algebra g. Their simple quotients are believed to be rational for specific values of k, called admissible, which depend on the choice of a nilpotent orbit in g. Here, by rationality, one means the complete reducibility of their positively graded modules. This conjecture was partially proved by Arakawa-van Ekeren and Creutzig-Linshaw. In this talk, I will discuss some consequences of the rationality for a very concrete example, namely the W-algebra associated with a subregular nilpotent element of the symplectic Lie algebra sp_4. In particular, we will be interested in certain actions on the W-algebra and the set of its simple modules.
Salleà distance / remote
AdresseIHP
© IMJ-PRG