Séminaires : Séminaire d'Algèbre

Equipe(s) : gr,
Responsables :J. Alev, D. Hernandez, B. Keller, Th. Levasseur, et S. Morier-Genoud.
Email des responsables : Jacques Alev <jacques.alev@univ-reims.fr>, David Hernandez <david.hernandez@imj-prg.fr>, Bernhard Keller <bernhard.keller@imj-prg.fr>, Thierry Levasseur <Thierry.Levasseur@univ-brest.fr>, Sophie Morier-Genoud <sophie.morier-genoud@imj-prg.fr>
Salle : Info sur https://researchseminars.org/seminar/paris-algebra-seminar
Adresse :

Le séminaire est prévu en présence à l'IHP et à distance. Pour les liens et mots de passe, merci de contacter l'un des organisateurs ou de souscrire à la liste de diffusion https://listes.math.cnrs.fr/wws/info/paris-algebra-seminar. L'information nécessaire sera envoyée par courrier électronique peu avant chaque exposé. Les notes et transparents sont disponibles ici.


Since March 23, 2020, the seminar has been taking place remotely. For the links and passwords, please contact one of the organizers or

subscribe to the mailing list at https://listes.math.cnrs.fr/wws/info/paris-algebra-seminar. The connexion information will be emailed shortly before each talk. Slides and notes are available here.


Orateur(s) Abel Lacabanne - Clermont-Ferrand,
Titre Higher rank Askey-Wilson algebras as skein algebras
Horaire14:00 à 15:00
RésumeThe skein algebra of a surface is built from the framed unoriented links in the thickened surface, modulo the Kauffman bracket relations. If the surface is the $4$-punctured sphere, it turns out that the skein algebra is a central extension of the universal Askey-Wilson algebra. De Bie, De Clercq and Van de Vijver proposed a definition of higher rank Askey-Wilson algebras, as a subalgebra of an $n$-fold tensor product of $U_q(\mathfrak{sl}_2)$. The aim of this talk is to explain an isomorphism between these higher rank Askey-Wilson algebras, and the skein algebras of punctured spheres. The diagrammatic flavour of the skein algebra provides then an efficient way to compute some relations between some elements of the Askey-Wilson algebra, notably the $q$-commutation relations discovered by De Clercq. This is joint work with J. Cooke.
SalleInfo sur https://researchseminars.org/seminar/paris-algebra-seminar