Séminaires : Dynamical systems and PDEs

Equipe(s) : gd,
Responsables :Sergei Kuksin, Dmitrii Treschev
Email des responsables : sergei.kuksin@imj-prg.fr
Salle : https://mi-ras-ru.zoom.us/j/98541889798?pwd=SGdnT2lPWCtrbzNjOHQyb09NS0dXdz09
Adresse :Zoom
Description Paris 7 Diderot & Steklov Mathematical Institute Online Seminar

Orateur(s) Sergei Vakulenko - Institute of Problems in Mechanical Engineering, St. Petersbourg,
Titre Universal dynamical approximation by Oberbeck-Boussinesque model
Horaire16:00 à 17:00
RésumeWe consider dynamics defined by the Navier–Stokes equations in the Oberbeck–Boussinesq approximation in a two dimensional domain. This model of fluid dynamics involves fundamental physical effects: convection and diffusion. The main result is as follows: local semiflows, induced by this problem, can generate all possible structurally stable dynamics defined by C1 smooth vector fields on compact smooth manifolds (up to an orbital topological equivalence). To generate a prescribed dynamics, it is sufficient to adjust some parameters in the equations, namely, the viscosity coefficient, an external heat source, some parameters in boundary conditions and the small perturbation of the gravitational force.