Séminaires : Séminaire d'Algèbre

Equipe(s) : gr,
Responsables :J. Alev, D. Hernandez, B. Keller, Th. Levasseur, et S. Morier-Genoud.
Email des responsables : Jacques Alev <jacques.alev@univ-reims.fr>, David Hernandez <david.hernandez@imj-prg.fr>, Bernhard Keller <bernhard.keller@imj-prg.fr>, Thierry Levasseur <Thierry.Levasseur@univ-brest.fr>, Sophie Morier-Genoud <sophie.morier-genoud@imj-prg.fr>
Salle : Info sur https://researchseminars.org/seminar/paris-algebra-seminar
Adresse :

Le séminaire est prévu en présence à l'IHP et à distance. Pour les liens et mots de passe, merci de contacter l'un des organisateurs ou de souscrire à la liste de diffusion https://listes.math.cnrs.fr/wws/info/paris-algebra-seminar. L'information nécessaire sera envoyée par courrier électronique peu avant chaque exposé. Les notes et transparents sont disponibles ici.


Since March 23, 2020, the seminar has been taking place remotely. For the links and passwords, please contact one of the organizers or

subscribe to the mailing list at https://listes.math.cnrs.fr/wws/info/paris-algebra-seminar. The connexion information will be emailed shortly before each talk. Slides and notes are available here.


Orateur(s) Merlin CHRIST - Hamburg,
Titre Gluing constructions of Ginzburg algebras and cluster categories
Horaire14:00 à 15:00
RésumeGinzburg algebras are a class of 3-CY dg algebras, which have attracted attention for their use in the categorification of cluster algebras. Given a marked surface with a triangulation, there is an associated Ginzburg algebra G. I will begin by describing how its derived category D^perf(G) can be glued from the derived categories of the relative Ginzburg algebras of the ideal triangles of the triangulation. We will see that the passage to Amiot's cluster category, defined as the quotient D^perf(G)/D^fin(G), does not commute with this gluing. As we will discuss, this can fixed by instead starting with the relative Ginzburg algebra of the triangulation and again applying Amiot's quotient formula. Remarkably, this resulting relative version of cluster category turns out to be equivalent to the 1-periodic topological Fukaya category of the surface.
SalleInfo sur https://researchseminars.org/seminar/paris-algebra-seminar