Séminaires : Séminaire d'Algèbre

Equipe(s) : gr,
Responsables :J. Alev, D. Hernandez, B. Keller, Th. Levasseur, et S. Morier-Genoud.
Email des responsables : Jacques Alev <jacques.alev@univ-reims.fr>, David Hernandez <david.hernandez@imj-prg.fr>, Bernhard Keller <bernhard.keller@imj-prg.fr>, Thierry Levasseur <Thierry.Levasseur@univ-brest.fr>, Sophie Morier-Genoud <sophie.morier-genoud@imj-prg.fr>
Salle : format hybride, IHP salle 01 et/ou à distance (Zoom). Info sur https://researchseminars.org/seminar/paris-algebra-seminar
Adresse :IHP
Description

Le séminaire est prévu en présence à l'IHP et à distance. Pour les liens et mots de passe, merci de contacter l'un des organisateurs ou de souscrire à la liste de diffusion https://listes.math.cnrs.fr/wws/info/paris-algebra-seminar. L'information nécessaire sera envoyée par courrier électronique peu avant chaque exposé. Les notes et transparents sont disponibles ici.

 

Since March 23, 2020, the seminar has been taking place remotely. For the links and passwords, please contact one of the organizers or

subscribe to the mailing list at https://listes.math.cnrs.fr/wws/info/paris-algebra-seminar. The connexion information will be emailed shortly before each talk. Slides and notes are available here.

 


Orateur(s) Alex TAKEDA - IHES,
Titre The ribbon quiver complex and the noncommutative Legendre transform
Date07/03/2022
Horaire14:00 à 15:00
Diffusion
RésumeThe structure of a fully extended oriented 2d TQFT is given by a Frobenius algebra. If one wants to lift this structure to a cohomological field theory, the correct notion is that of a Calabi-Yau algebra or category; the CohFT operations can be described by a certain graph complex. There are two different notions of Calabi-Yau structure on categories, both requiring some type of finiteness or dualizability. In this talk I will discuss a variation that works in non-dualizable cases as well; in this case the graphs get replaced by quivers. The resulting complex calculates the homology of certain moduli spaces of open-closed surfaces, and can be used to give a fully explicit description of these operations. In the second half of the talk, I will describe some of these constructions, including how to produce operations from smooth and/or relative Calabi-Yau structures, and explain how, in the smooth case, this can be thought of as a noncommutative version of the Legendre transform. This is joint work with M. Kontsevich and Y. Vlassopoulos.
Salleformat hybride, IHP salle 01 et/ou à distance (Zoom). Info sur https://researchseminars.org/seminar/paris-algebra-seminar
AdresseIHP
© IMJ-PRG