Séminaires : Séminaire d'Algèbre

Equipe(s) : gr,
Responsables :J. Alev, D. Hernandez, B. Keller, Th. Levasseur, et S. Morier-Genoud.
Email des responsables : Jacques Alev <jacques.alev@univ-reims.fr>, David Hernandez <david.hernandez@imj-prg.fr>, Bernhard Keller <bernhard.keller@imj-prg.fr>, Thierry Levasseur <Thierry.Levasseur@univ-brest.fr>, Sophie Morier-Genoud <sophie.morier-genoud@imj-prg.fr>
Salle : format hybride, IHP salle 01 et/ou à distance (Zoom). Info sur https://researchseminars.org/seminar/paris-algebra-seminar
Adresse :IHP

Le séminaire est prévu en présence à l'IHP et à distance. Pour les liens et mots de passe, merci de contacter l'un des organisateurs ou de souscrire à la liste de diffusion https://listes.math.cnrs.fr/wws/info/paris-algebra-seminar. L'information nécessaire sera envoyée par courrier électronique peu avant chaque exposé. Les notes et transparents sont disponibles ici.


Since March 23, 2020, the seminar has been taking place remotely. For the links and passwords, please contact one of the organizers or

subscribe to the mailing list at https://listes.math.cnrs.fr/wws/info/paris-algebra-seminar. The connexion information will be emailed shortly before each talk. Slides and notes are available here.


Orateur(s) Hipolito Treffinger - (Université de Paris),
Titre Torsion classes and tau-tilting in higher homological algebra, I
Horaire14:00 à 14:30

Higher homological algebra was introduced by Iyama in the late 2000's. His point-of-view was that some classical results by Auslander and Auslander--Reiten were somehow 2-dimensional and should have n-dimensional equivalents. This new theory quickly attracted a lot of attention, with many authors generalising classical notions to the setting of higher homological algebra. Examples of such generalisations are the introduction of n-abelian categories by Jasso, n-angulated categories by Geiss--Keller--Oppermann, and n-torsion classes by Jørgensen.Recently, it was shown by Kvamme and, independently, by Ebrahimi and Nasr-Isfahani, that every small n-abelian category is the n-cluster-tilting subcategory of an abelian category. In this talk we will focus on the relation between n-torsion classes in an n-abelian category MM and (classical) torsion classes of the abelian category AA in which MM is embedded. By considering functorially finite torsion classes, this will allow us to relate n-torsion classes with maximal tau_n-rigid objects in MM.Some of the results presented in this talk are part of a joint work by J. Asadollahi, P. Jørgensen, S. Schroll, H. Treffinger. The rest corresponds to an ongoing project by J. August, J. Haugland, K. Jacobsen, S. Kvamme,Y. Palu and H. Treffinger.

Salleformat hybride, IHP salle 01 et/ou à distance (Zoom). Info sur https://researchseminars.org/seminar/paris-algebra-seminar