Séminaires : Séminaire Général de Logique

Equipe(s) : lm,
Responsables :S. Anscombe, O. Finkel, A. Khélif, A. Vignati
Email des responsables : sylvy.anscombe@imj-prg.fr, vignati@imj-prg.fr
Salle : 1013
Adresse :Sophie Germain
Description

ArchivesRetour ligne automatique
Abonnement à la liste de diffusion


Orateur(s) Sylvy Anscombe - IMJ-PRG,
Titre NIP henselian valued fields
Date16/05/2022
Horaire15:15 à 16:15
Diffusion
Résume

NIP -- "not having the independence property" -- is a constraint on the combinatorial behaviour of the definable sets in a given theory. Roughly: NIP means that there is no family of definable sets that induces on an infinite set X the family of all subsets of X. Shelah's Conjecture proposes that any complete NIP theory of fields is the theory of a separably closed, real closed, "henselian", or finite field. I will explain how we can refine this conjecture by specifying the complete theories that may appear in the "henselian" case. This is joint work with Franziska Jahnke.

Salle1013
AdresseSophie Germain
© IMJ-PRG