Séminaires : Séminaire d'Algèbre

Equipe(s) : gr,
Responsables :J. Alev, D. Hernandez, B. Keller, Th. Levasseur, et S. Morier-Genoud.
Email des responsables : Jacques Alev <jacques.alev@univ-reims.fr>, David Hernandez <david.hernandez@imj-prg.fr>, Bernhard Keller <bernhard.keller@imj-prg.fr>, Thierry Levasseur <Thierry.Levasseur@univ-brest.fr>, Sophie Morier-Genoud <sophie.morier-genoud@imj-prg.fr>
Salle : Zoom ou hybride selon les orateurs. Info sur https://researchseminars.org/seminar/paris-algebra-seminar
Adresse :Zoom ou IHP Salle 01

Le séminaire est prévu en présence à l'IHP et à distance. Pour les liens et mots de passe, merci de contacter l'un des organisateurs ou de souscrire à la liste de diffusion https://listes.math.cnrs.fr/wws/info/paris-algebra-seminar. L'information nécessaire sera envoyée par courrier électronique peu avant chaque exposé. Les notes et transparents sont disponibles ici.


Since March 23, 2020, the seminar has been taking place remotely. For the links and passwords, please contact one of the organizers or

subscribe to the mailing list at https://listes.math.cnrs.fr/wws/info/paris-algebra-seminar. The connexion information will be emailed shortly before each talk. Slides and notes are available here.


Orateur(s) Tasuki Kinjo - IPMU Tokyo,
Titre Deformed Calabi--Yau completion and its application to DT theory
Horaire14:00 à 15:00

In this talk, we investigate an application of the theory of deformed Calabi--Yau completion to enumerative geometry. The notion of Calabi--Yau completion was first introduced by Keller as a non-commutative analogue of the canonical bundle. In the same paper, he also introduced a deformed version of the Calabi--Yau completion. We will explain that the deformed Calabi--Yau completion is a non-commutative analogue of an affine bundle modeled on the canonical bundle. Combining this observation with a recent work of Bozec--Calaque--Scherotzke, we prove that the moduli space of coherent sheaves on a certain non-compact Calabi--Yau threefold is described as the critical locus inside a smooth moduli space. This description has several applications in Donaldson--Thomas theory including Toda's \chi-independence conjecture of Gopakumar--Vafa invariants for arbitrary local curves. By dimensional reduction, it implies (and extends) Hausel--Thaddeus's cohomological \chi-independence conjecture for Higgs bundles.This talk is based on a joint work with Naruki Masuda and another joint work with Naoki Koseki.

SalleZoom ou hybride selon les orateurs. Info sur https://researchseminars.org/seminar/paris-algebra-seminar
AdresseZoom ou IHP Salle 01